Shape interactions in macaque inferior temporal neurons.

نویسندگان

  • M Missal
  • R Vogels
  • C Y Li
  • G A Orban
چکیده

Missal et al. observed that the responses of inferior temporal (IT) neurons to a shape were reduced markedly when this shape partially overlapped a larger second shape, suggesting that shape interactions determine IT responses. In the present study, we compared the responses of IT neurons with combinations of two shapes which did or did not overlap and studied the effect of the relative and absolute positions of the two shapes. In a first test, a preferred shape (figure) was presented at the fixation point while a second, nonpreferred, shape was displayed either in the background of the figure (overlap) or at one of four peripheral positions (nonoverlap). Controls consisted of presentations of either shape in isolation at each of the five positions. The stimuli were presented during a fixation task. The responses to these combinations of two shapes were, on average, reduced compared with those elicited by the preferred shape presented in isolation. This suppression occurred whether or not the two shapes overlapped, but the degree of suppression in the overlap and nonoverlap conditions did not correlate. These interactions were stronger when the interacting stimulus was located in the contralateral compared with the ipsilateral hemifield. The position of the interacting stimulus within a hemifield significantly affected the suppression associated with combined shapes in some neurons. The strength of the interactions of the two nonoverlapping shapes depended on the shape of the interacting stimulus in half of the neurons. In a second test, the preferred shape and interacting stimulus could appear either at the fixation point or at one eccentric position. Here we found that the suppression was, on average, strongest when the interacting stimulus, rather than the preferred shape, was presented at the fixation position. Also, in 40% of the neurons, the response reduction was similar in overlap and nonoverlap conditions if effects of stimulus position were taken into account. In both tests, we also measured the responses to combinations of a nonpreferred shape and the interacting stimulus and showed that the response to a combination of two nonpreferred shapes was, in general, smaller than the response to a combination of the preferred and nonpreferred shape. Overall the results indicate that stimulus interactions in the receptive fields of IT neurons can be position and shape selective; this can contribute to the coding for the relationships between object parts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes.

Real-world objects are three-dimensional (3D). Yet, it is unknown whether the neurons of the inferior temporal cortex, which is critical for object recognition, are selective for the 3D shape of objects. We tested for such selectivity by comparing responses to stereo-defined curved 3D shapes derived from identical pairs of monocular images. More than one-third of macaque inferior temporal neuro...

متن کامل

Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex.

The anterior part of the macaque inferior temporal cortex, area TE, occupies a large portion of the temporal lobe and is critical for object recognition. Thus far, no relation between anatomical subdivisions of TE and neuronal selectivity has been described. Here, we present evidence that neurons selective for three-dimensional (3D) shape are concentrated in the lower bank of the superior tempo...

متن کامل

Organization of local horizontal functional interactions between neurons in the inferior temporal cortex of macaque monkeys.

Detailed knowledge of neuronal circuitry is necessary for understanding the mechanisms underlying information processing in the brain. We investigated the organization of horizontal functional interactions in the inferior temporal cortex of macaque monkeys, which plays important roles in visual object recognition. Neuronal activity was recorded from the inferior temporal cortex using an array o...

متن کامل

Organization of local horizontal functional interactions between neurons in the 1 inferior temporal cortex of macaque monkeys 2 3

21 Detailed knowledge of neuronal circuitry is necessary for understanding the mechanisms 22 underlying information processing in the brain. We investigated the organization of horizontal 23 functional interactions in the inferior temporal cortex of macaque monkeys, which plays 24 important roles in visual object recognition. Neuronal activity was recorded from the inferior 25 temporal cortex u...

متن کامل

Tuning for shape dimensions in macaque inferior temporal cortex.

It is widely assumed that distributed bell-shaped tuning (e.g. Radial Basis functions) characterizes the shape selectivity of macaque inferior temporal (IT) neurons, analogous to the orientation or spatial frequency tuning found in early visual cortex. Demonstrating such tuning properties requires testing the responses of neurons for different values along dimensions of shape. We recorded the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 82 1  شماره 

صفحات  -

تاریخ انتشار 1999